2 ARV

" STRUCTURED PROGRAMMING
ROGDIRAL DNPLSTO

OVERVIEW O
LECTURE

What is an Algorithm?
Baking a Cake
Divide and Conquer

Stop (in the name of efficiency)

Static Methods
Prince of Bel Air
Lollipop

More Method Calls

FooBarBaz

A (OMPLICATED TASK

e (onsider the process of baking a wedding cake

e where do we start?

* shall we build a long cylinder and carve it into shape!

DIVIDE & CONQUER

e Programs (especially large and/or complex anes) can be sub-divided

into logical sub-programs

o Advantages: [lef's discuss|

// Author: Reges & Stepp
// This program prints assorted figures.

public class Figuresl {
public static void main (String[] args) {
v ");

System.out.println ("'

System.out.println (" / \N\") 5
System.out.println ("/ ") s
System.out.println("| STOP ") ;
* The program works correctly System.out.println("\\ /")
System.out.println("™ _ /");
System.out.println();
System.out.println ("\\ /")
System.out.println (™ \\ /")

e But what's wrong with this?

(
(
(
(
(
(
(
(
(-
System.out.println("+--———-—-- +");
System.out.println(
System.out.println()
System.out.println(" / A\
System.out.println ("/ A\ "
System.out.println("| STOP
System.out.println (" /
System.out.println ("
System.out.println(
System.out.println()
System.out.println (" / A\
System.out.println("/ \
System.out.println("+--———-—--- +

}
e What s a better way

Chapl/Figuresl

ki
e
s
]
P
6)
(Ve
——
=
]
—
A
C =
=
A
—]
[V
—

WHAT [5 AN ALGORITHM & WRY 15 IT USEFUL?

Algorithm:

Algorithms can be used to:

o tatic method:
* 4 block of Java statements that is given a name
* denotes the structure of the program
* unit of procedural decomposition that eliminates redundancy by code reuse

[recall baking the wedding cake]

ST A'[IC * Typically we can break a class into several static methods - each of which solve some piece of the overall problem

* Jou have already seen a static method called _______

METHODS ST

public static void (String[] args) {

, which is in the controlling class in a Java application

* The static methods you will use follow a similar structure
public static void <name> () ... {

* design an algorithm

* decide what are the overal

10 CREATE i

* look at the structure and which commands are repeated

EEFECTIVE -
STATIC METHODS | -t b

o call (run) the

* note that the programs ma in () method executes the other methods
to perform the overall tasks [puls everything together]

Program Structure Using Static Methods

(lass
method

statement Ta;
statement b;

statement n;

SIRUCTURING o

statement Zs;

CTATIC METHODS |

statement n;

method J
statement Js;

statement Jb;

statement Jn;

ﬁethod n

DECLARING A
SIATIC METHOD

...give your method a name so that it can be
called/ executed/ run

public static <name>().. {
The keyword pub 11 ¢ indicates that this method is available to be used by all parts of your program
The keyword stat i c: indicates that this is a static method (i e does not define objects and is not an instance method)

The keyward - indicates that this method executes statements but does not return any value (ater methods will
compute and return values)

<name> () : eq drawlinel) or drawlop() or writeSpaces(
public static drawLine ()

methodName () the parentheses specify a list {in this case an empty list) of values to be sent to your method s
input. These values are called parameters (see chap J)

PRINCE OF BEL-ALR

Desired Qutput of Program

* Now this is

* My life got

e Now this is

* My 1life got

e Now this is

* My 1life got

the story all about how
flipped turned upside-down

the story all about how
flipped turned upside-down

the story all about how
flipped turned upside-down

What is the pattern?

Apply what we have learnt so
far:

EH
LET'S THINK
[HIS THROUGH v

Q Design/ structure a program to
o produce the desired output

SOLUTION o lefsceatea that defines the repeating lines
PROCESS o [all it something descriptive, for example, displayMessage()
public static void displayMessage () {

METHOD // what should go in here?

e Now, what should we do with this method?

SOLUTION * ceafethe _______ called main that will then ‘invoke

or call the method called three times

PROCESS: (ALL | romse cvvsc vois ity e
THE METHOD

* Let’s put it altogether

PUTTING IT T0GETHER

public class FreshPrince {

public static void main(String[] args) { // invoke or call the method
displayMessage() ;
System.out.println() ;
displayMessage() ;
System.out.println() ;
displayMessage() ;

public static void displayMessage() { // define the method i
System.out.println("Now this is the story all about how");
System.out.println("My 1life got flipped turned upside-down");

}

}

//Chapl/ FreshPrince or TwoMessages

WHEN 10 USE AND WHEN NOT 10 USE METHODS

o Place statements in a static method if the statements are:
* related structurally and/ or
* repeated

o You should NOT create static methods for:

* 3 printh statement
* only blank lines [put blank printin statements in main() method |
e unrelated/ weakly related statements [consider splitting these into 2 smaller methods]

Apply what we have learnt so far

Look for patterns. Create and use static methods as appropriate.

CRITICAL THINKING/ ef's it o program tht prins the following outputto the consoe
APPLICATION Lollipop, lollipop

Oh, lolli lolli 1lolli

Lollipop, lollipop
Oh, lolli lolli lollzx

Lollipop, lollipop
Oh, lolli lolli lollzx

Lollipop, lollipop
Oh, lolli lolli lolli1

Call my baby lollipop

Chapl/ Lollipop

(RITICAL THINKING/
APPLICATION: CLASS DISCUSSION

METHOD CALL —

// methods for structure and redundancy

public class Figures?2 {
public static void main(String[] args) {
drawTop () ;
drawBottom() ;

// draws redundant part that

Some notes: // looks like the top of the sign

Method cal] 1 hod public static void drawTop () ({

ethod call: a command to execute another metho System.out.println(" ");
System.out.println(" / A" ;

When a method is called, the program’s execution } System.out.println("/ A"

jumps into that method, and executes its statements

// draws redundant part that
Mter that it iumos back to the point where th // looks like the bottom of the sign
erthat, It Jumps Dack to the point whnere the public static void drawBottom() {
method was called from System.out.println ("\\ /") ;
System.out.println (" \\ /") ;

file://///
file://///
file://///______/

public class Figuresl {
Fublic static void main(String[] args)

System
System
System

System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.

.out.println ("
.out.println ("
.out.println("/
out.println ("|

out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.

println

println
println
println

println
println
println

/o N\

A"
STOP |");
\ /")
N\ /")
\ /")
AN\ /")
________ +H)’.
_—_n)’.
/ \\")
\\")
STOP |");
\ ")
WMy
_—_u);
/ \\") g
\ n) :
________ +") ;

(RITICAL THINKING

Let's break this redundant program to its lowest common parts
Look for patterns

Look for repetitions

How many lowest comman parts can you find?

We will construct the methods using the lowest common parts

APPLY WHAT YOU
HAVE LEARNT:
(REATE SEPARAIE
METHODS

GROUP WORK

METHOD CALLY: PULLING EVERYTHING ALIOGETHER

Using methods

public class Figures3 {
public static void main(String[] args) {

drawlpp()
drawslopl);
drawBottom();
drawbottomy);
drawline()
drawlp()
drawdlp()
drawbottom);
System. vt prindinf)
drawlp()

drawlinel)
}

// draws redundant part that looks like the top of an egg

System.out.println(" ")
System.out.println (" / A\"M)
System.out.println ("/ A")

}

// draws redundant part that looks like the bottom of an egg

System.out.println ("\\ /")
System.out.println (" \\ /")
// draws a line
{
System.out.println (“+--—-—-—-—-——- +");

}
// draws the STOP

System.out.println (" |

System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.

Not using methods

out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.
out.

(String[] args)
v 11);
" / &n);
"/ ")
STOP |™);
"\\ ")
| AN /")
"\ N\ /") ;
" \\ /n);
L +11);
) 7
" ____n);
" / l!l");
"/ W) g
STOP |");
vv\\ 11);
" AN /")
) ;
" _______:V);
" / l:l") :
n/ \\H),
L +v1);

{

file://///
file://///
file://///______/
file://///______/
file://///
file://///
file://///______/
file://///
file://///
file://///
file://///
file://///______/

CHANGE THE ORDER
IN WHICH METHODS
ARE DEFINED
WHAIL HAPPENS?

public class Figures4d {

// draws a line
public static void drawline() {
System.out.println (“+--—---—-—- +") ;
}

// draws redundant part that looks like the top of an egg

public static void drawTop () {
System.out.println(" "
System.out.println (" / ;
System.out.println ("/ \\") 5

// draws the STOP
public static void drawStop() {
System.out.println ("| STOP (") ;

// draws redundant part that looks like the bottom of an egg
public static void drawBottom() ({
System.out.println ("\\ /") ;
System.out.println("__ /");

}

public static void main (String[] args) {

draw lopl)
drawslopl)
drawBottom()
drawBottom()
drawlinel)

draw lopl)
drawslopl)
drawBottom|)
System ut printinf)
draw lopl)
drawlinel)

CHANGE THE ORDER IN
WHICH THE METHODS
ARE CALLED

WHAT HAPPENG?

public class Figures5 {
// draws the top of an egg
public static void drawTop () {
System.out.println (")
System.out.println (" / \") s
System.out.println ("/ ")
}
// draws the bottom of an egg
public static void drawBottom() {
System.out.println ("\\ /")
System.out.println ("™ \\ /")
}
// draws a line
public static void drawline() {
System.out.println (“+-----—--—- +") ;
}
// draws the STOP
public static void drawStop() {
System.out.println (150 [;
}
public static void main(String[] args)
drawbottom)!
drandlpp()
dranbottom()}
drawlp()
drawlinel)
drawlp()
draflpp()
drawbotom);
System vt printinf)
drawlp)}
drawlinel);
drawlp)}
drawlinel);
b}

file://///
file://///
file://///______/

METHODS THAT CALL OTHER METHODS: WHAT 15 THE OUTPUT?

[Student
// Info

public dlass FooBarBazMumble |

public static void main(String[] args) |

fodl);
ban);
l
public static void foof) |
Syster autprinthn('foo’);
mumbie);
System.ou/printin);
l
public static void bar() |
System.outprintn(‘bar");
bad);
|
public static void baz() |
System aufprintin('baz’);
mumbid);

|
public static void mumblef) |
System.oufprintin(‘ mumble”)

]
l

Chap/ FooBar

How many and which are the methods”
Which are the statements?

Which methods call other methods?

What is the output?

Order does matter - in what way?

In what way does order not matter?

" (RITICAL THINKING: STUDENT EXERCISE

How should we approach creating this rocket, using methods?? What i the pattern? Repetitions?

